Exercise 48

Find the horizontal and vertical asymptotes of each curve. If you have a graphing device, check your work by graphing the curve and estimating the asymptotes.

$$
y=\frac{2 x^{2}+1}{3 x^{2}+2 x-1}
$$

Solution

Calculate the limits as $x \rightarrow \pm \infty$ to determine the horizontal asymptote. In the second limit, make the substitution, $x=-u$, so that as $x \rightarrow-\infty, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x^{2}+1}{3 x^{2}+2 x-1} & =\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x^{2}}}{3+\frac{2}{x}-\frac{1}{x^{2}}}=\frac{2+0}{3+0-0}=\frac{2}{3} \\
\lim _{x \rightarrow-\infty} \frac{2 x^{2}+1}{3 x^{2}+2 x-1} & =\lim _{u \rightarrow \infty} \frac{2(-u)^{2}+1}{3(-u)^{2}+2(-u)-1} \\
& =\lim _{u \rightarrow \infty} \frac{2 u^{2}+1}{3 u^{2}-2 u-1} \\
& =\lim _{u \rightarrow \infty} \frac{2+\frac{1}{u^{2}}}{3-\frac{2}{u}-\frac{1}{u^{2}}} \\
& =\frac{2+0}{3-0-0} \\
& =\frac{2}{3}
\end{aligned}
$$

Therefore, the horizontal asymptote is $y=2 / 3$. The vertical asymptotes are found by setting what's in the denominator equal to zero and solving for x.

$$
\begin{aligned}
& 3 x^{2}+2 x-1=0 \\
& (3 x-1)(x+1)=0 \\
& x=\frac{1}{3} \quad \text { or } \quad x=-1
\end{aligned}
$$

The function is graphed versus x below with the asymptotes labelled.

